# Principles of Servicing Diagnostic X-Ray Systems (Phase 1)



#### RADIOLOGICAL SERVICE TRAINING INSTITUTE

## Introduction

Principles of Servicing Diagnostic X-Ray Systems is a skills development program that teaches the new service professional the cognitive skills necessary to understand the X-ray system and its applications in the medical community. The program is divided into six major learning units:

- O Introduction to radiography
- O Radiation safety
- O The production of X-rays
- O Formation of the X-ray image
- O Image receptor technologies
- O PACS troubleshooting basics

The course contains lecture, demonstration, and hands-on training, which teach participants proper operation, radiation safety, image quality assessment, and global understanding of the X-ray system. Upon completion of the course, the student will be able to perform first level service on the radiographic system.

## **Prerequisites**

To attend this course, the service professional must have a two year associate degree in electronics or equivalent service experience.

## **Objectives**

At the conclusion of this course, participants will be able to:

- Have a thorough understanding of X-rays and X-ray production
- Follow safety procedures for patients, physicians and individuals
- Describe the criteria for high quality radiographs
- Understand overtable radiographic, fluoroscopic, and special procedures system operation
- Describe the parameters of all current image receptor technologies
- Have a basic understanding of PACS and DICOM

## **Course Outline**

#### Day 1

- Introduction to radiography
  - O X-rays: an overview
    - A brief history
    - What they are

- How they are produced
- What they do
- O The radiographic system, an overview
- O The radiograph, an overview
- O Image receptor types
- O Measurements of beam quality and quantity
- O Half Value Layer
- O Factors that measure radiographic quality
  - Density
  - Contrast
  - Sharpness
- O Operation of the overtable system
- O Operation of the undertable system
- O Patient positioning

#### Day 2

- Introduction to radiography (cont'd)
  - O Factors that affect radiographic quality
  - O Basic single purpose radiographic system
    - Computed Radiography
    - Direct Radiography
    - Film Screen Radiography
- O Radiographic studies
  - Common non-contrast media
  - Common contrast media
  - Special radiographic studies
  - Patient Positioning
- O Introduction to troubleshooting the X-ray system
  - Minimum Configuration for R/F suites
  - Isolation of major areas
- Radiation safety, principles and practices
- O Radiation and its biological effects
  - Aton
  - X-ray beam
  - Compton effect
  - Photoelectric effect
- O Radiation safety, working with radiation
  - Rules governing working with radiation
  - Time, distance, and shielding
  - Radiation protective devices
- Lab Activities
- O Learn safety rules in working with radiation

#### Day 3

- The production of X-rays
- O How X-rays are produced
- Where X-rays are produced
  - How X-rays are controlled
  - Bremsstrahlung radiation theory
  - Characteristic radiation Theory
- O The X-ray tube
  - X-ray tube construction
  - Functions of basic elements
  - Electrical and mechanical requirements
  - Tube protection
  - Understanding Tube Charts
  - Problems and cures
  - Installation and evaluation
- Lab Activities
- O Main component identification
- O X-ray tube warmup
- O Radiographic overtable operation & CR operation
- O Diagnostic workstation operation

## Day 4

- The production of X-rays (cont'd)
- O H.V. cables and terminations
  - Composition and conductors
  - Federal terminations
- O H.V. transformers (single phase, 3 phase, high frequency)
  - R/F changeover
  - Full wave/half wave rectification
  - Circuit failure and cause
- O Generation of three phase
  - Wye and delta
  - Six and twelve-pulse generation
  - Line-to-neutral versus line-to-line voltage
  - Relationship of input to output voltages
  - High frequency inverter technology
- Lab Activities
- O Reference mAs
- O Effects:
  - mA/time changes
  - kV
  - SID
  - Grids

# Principles of Servicing Diagnostic X-Ray Systems (Phase 1)



### RADIOLOGICAL SERVICE TRAINING INSTITUTE

#### Day 5

- The production of X-rays (cont)
  - O The X-ray generator
    - High frequency functional diagram
    - kV circuitry
    - Time/logic circuits
    - mA control
    - Troubleshooting

### Day 6

- Formation of the X-ray image
- O Control of the X-ray image
  - Techniques
  - Technique charts
  - Inverse square law
- O Control & production of secondary and scatter radiation
  - Photoelectric effect
  - Compton effect
  - Grids
- O Intensifying screens
  - Effect on quantity and quality
- O Measuring quantity and quality of the X-ray beam
  - Ionization chambers
  - Half-value layer
- Lab Activities
- O X-ray tube
  - Collimator removal
  - Anode rotation verification
  - Filament check
  - Stator type
  - Greasing federal terminations
  - Focal spot size and resolution

## Day 7

- X-ray beam control
  - O Collimators
- O Resolving capabilities
- O Care and handling
- O X-ray to light field alignment
- O Central ray alignment
- Image receptor technology

- O X-ray film and effects on radiographic quality
  - Construction of X-ray film
  - Formation of a latent image
  - Sensitometric properties
  - H & D Curve and its relationship to digital imaging
  - Speed, contrast, latitude & base fog
- Lab Activities
  - O Film characteristics
  - O Non-invasive test equipment
- O H//I

#### Day 8

- Image receptor technology
  - O Computed Radiography
    - CR Imaging Plates
    - PSPs
    - IP Scanners
    - Image post processing
    - S numbers
    - Exposure Index
- Direct Radiography
  - O Flat Panel Construction
- O Direct VS Indirect detectors
- A to D conversion
- O Quantization
- O Digital Image Properties
- O Detector matrix
- O File sizes
- Detector Calibrations
- O Gain Calibration
- O Bad Pixel Calibration
- O Dark Offset
- O Dose Calibration
- Display Performance
- O Image Enhancement
- O Lookup Tables
- O Image Management
- Lab Activities
- O Light field to X-ray field alignment
- O Central ray alignment
- O DR operation
- O AEC

#### Day 9

- PACS troubleshooting basics
- O Data Representation
- O Network Topology
- O Network troubleshooting
- O DICOM basics
  - AE titles
  - DICOM configuration
  - DICOM PING
  - DICOM ECHO
- Network Interfaces
- Network Hardware
- O Hubs
- O Switches
- O Routers
- Network Protocols
- Protocol Data Units
- Data Storage
- The eye and what it sees
- O Visual acuity
- O Intensity discrimination
- Image Intensifiers
- First Visit Action Items
- Lab Activities
- O DICOM output configuration
- O DICOM troubleshooting
- O Fluoroscopic imaging
- O Room evaluation

## Day 10

- System review
- Final exam
- Course evaluation